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LETTER TO THE EDITOR

Analytic Bethe ansatz and T'-system in Cél) vertex models

A Kunibat
Department of Mathematics, Faculty of Science, Kyushu University, Fukuoka 812, Japan

Received 14 December 1993

Abstract. Eigenvalues of the commuting family of transfer matrices are expected to obey the
T-system, & set of functional relation, proposed recently. Here we obtain the solution to the
Tsystem for C2 vertex models. They are compatible with the analytic Bethe ansatz and
Yang-Baxterize the classical characters.

Solvable lattice models in two-dimensions possess a commuting family of the row-to-
row transfer matrices [1]. Recently, a set of functional relations (FRs), the T-system
are proposed among them [2] for a wide class of models associated with any classical
simple Lie algebra or its quantum affine analogue [3,4]. In the QISM terminology [5],
the T-system relates the transfer matrices with various fusion types in the auxiliary space
but acting on a common quantum space. It generalizes ¢arlier FRs [6-9] and enables the
calculation of various physical quantities [10]. The structure that underlies the T-system
is an (short) exact sequence of the finite dimensional modules of the above mentioned
algebras {2]. As discussed therein, there is an intriguing connection between the T-system,
the thermodynamic Bethe ansatz (TBA) and dilogarithm identities, mdlcanng some deep
interplay among these subjects.

In this letter we report the solution to the C(” T-system that is compatible with the
analytic Bethe ansatz [11,12] and Yang—-Baxtenzes the classical characters. To explain the
problem, let W (a.= 1,2, m € Zy;) be the irreducible finite dimensional representation
(IFbR) of the quantum affine algebra U, (Cm) (g: generic) as sketched in section 3.2 of [2].
As the Cy-module, it decomposes as .

Vo nt even

W 2 Vi, ® Vim2pon ... ® [ v, m odd (1)
1

W& ~ V,
where @y, @ are the fundamental weights and V,, denotes the IFDR of Cs with highest weight
. Thus dimW = (m-+2)(m+4)(m>+6m-+6)/48 for m even, = (m+1)(m+3)2(m+5)/48
for m odd and dim W& = (m + 1)(m+2)(2m +3)/6. For W, W' e (W@}, a=1,2,m ¢
Z,}, there exists the quantum R-matrix Ry w(u) acting on W @ W’ and satisfying the
Yang-—Baxter equation

Rw,wr (u) Rw.we (@ + 0) Ry, wr (v) = Ry, w (V) Rw,w- (8 + V)Rww (8} ()
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with #, v € C being the spectral parameters. For W = W' = Wl(l), the R-matrix has been
explicitly written down in [13, 14], from which all the other Ry »» may be constructed via
the fusion procedure [15]. W is an analogue of the m-fold symmetric tensor representation

of W, The transfer matrix with auxiliary space W@ is then defined by

TOW) = Tryo Ry i@ — w1) .. Ryt o (6 — wy)) ®)

up to an overall scalar multiple. Here N & 2Z denotes the system size, wy, ... wy are
complex parameters representing the inhomogeneity, p = 1,2 and s € Z;. We say that
(3) is the row-to-row transfer matrix with fusion type W acting on the quantum space
(W§p ))QN . We shall reserve the letters p and s for this meaning throughout. Thanks to the
Yang-Baxter equation (2), the transfer matrices (3) form a commuting family

[T@@), T @) =0. @)
We shall write the eigenvalues of 7,®(u) as A (x). Our goal is to find an explicit formula

for them.
For the purpose, we postulate the (unrestricted) T-system [2]:

1 1 1 1
12 (-5) 12 (14 5) = BRI s + 82 (u- 3) 22 (14 3)

(5a)
1 1 ‘

Tt (“'5) Lo (‘”’E) L@l ) + G OLPWI0@ b

TP — DT @+ 1) = T2 T2, () + 8P )T (w). (5¢)

Here g (u) is a scalar function that depends on W and overall normalization of the
transfer matrices. Due to (4) the eigenvalues A®)(x) also obey the same system as
(5), which can be solved successively yielding an expression of the A®(x) in terms of
Agn(u + shift) and A?’) (2 + shift). Thus the first step to achieve the goal is to find the
formula for the eigenvalues A?)(u) and A?) (). This we do by the analytic Bethe ansatz.
The method consists of assnming the so-called ‘dressed vacuum form’ for the eigenvalues
and determining the unknown parts thereby introduced from some functional properties and
asymptotic behaviours. See {12, 16] for the detail. To present the results for our problem, we
prepare a few notations. Let &y, oz be the simple roots of C>. We take a5 to be a long root
and normalize it as (o2 [ o2) = 2 via the bilinear form ([). Then one has (o, | @) = 841/%s,
where t; =2, tp = 1. We set

N
py=[Ju-wl [W=q¢"-q"*

jai

@ m—1 m-—3) (_”m-—l)
¢ (u)_¢(u+ ta )¢(u+ — )9 - ©

a=112’m Ez?l

Na
g =[x~ a=12

J=1
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Here Ny, N2 are non-negative integers such that @ = Nsw, — Niop — Naors is 2 non-
negative weight. The numbers {um la=1,2,1< j < Ng} are the solutions to the Bethe
ansatz equation [16]

$Gu + (5/1p)8pa) _ Qb(m‘“’ + (0 o))
0GP — (5/1)000) s Qu(in® — (@ | )

=1,2,1<k <N, )

Under these definitions, the result of the analytic Bethe ansatz reads as follows.
Casep=1;

21@=3) | oy oy 2E D
£21(I'Jt-i-%)-|-¢'”T (+ 2005 (u)Qi(u'F%)
G+)0w—-1 0+ H0+D)

T 3 5 5y | Ga)
Qi1 +3)020+3) Oi1{w+3)020e+3)

2) o) Qo(u—1) Qi) Q2(u +3) )
A= (“+ )(Qz(u+1) t G+ D0GTD)

© Q+4) | O +3)0:) )
s (” )(Qz(u+2)+ 01+ D02 +2)
3\ GO +3)
) hl
s (“+ )Ql(u+1>gl(u+z)'

AP @) = ¢ + 3P + 1)

+ ¢§"(u +3)¢5 (@) (

(80)

Case p=2;

ey 2 5 (2)( ) Ci-3) 0+ -1)
A () = & (u+2) e+ = (Ql(u+1)+Q1(u+%)Q2(u+§)

3 1N Qi +DQE+d) CiE+d)
@ el (2) e 2 2 F 8
o (“+2) : (“+2) (Qlcu+g)gztu+%) * Ql(u+§)) @)

On(u — o) @ :u+4)
—Q( D + 6@ (u + 1)} ()Q( T2

AP =P+ 3P w+2)

01(w) Os(a +3) 0:1@01{u+3)
(2) 2)
+ 95+ 39 (u)(Ql(u+2)Qz(u+1) 0i+ D01 +3)
01 +3)02()
Q:1(u+ DQa(u +2)) ) &)

We employ the convention such that the eigenvalue ﬁWf”va" (1) on the highest component
Vaa, is [+ 3] + 1] and let the overall normalization of A®(u) as specified by (8). (The
common factor ¢ (u + 3) in (8¢) has been attached so as to simplify the forthcoming

formula (12).) The A‘“’(u) consists of dim W\® = 4,5(a = 1, 2) terms and its pole-free
conditions are given by (7) in accordance with the analytic Bethe ansatz. The formulae (8)
coincide with those in [16, 17] for some special cases. In particular, ratio of @ ’s in A(D(u)

are just those appearing in [16] for the Cm vertex model with W = W(n (upon some
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convention adjustment). Namely, the G -part is determined only from the auxiliary space
choice, while the quantum space dependence enters ¢ -part. Thls is also the case in the
formula (3.17) of [8] for the sI(n) case. Similarly, @,-partin A, (u) are those appearing
in the B{" case of [16] due to the equivalence C; = By.

To proceed to A®)(u) with higher m, we introduce a few more notations.

_[o8wGw) fora=1 _ { H{u) fora=1
Gel) = G{u) fora=2 Haw) = ¢§2) () H (1) fora=2 ©
L -1
Glu) = Q2(u + 3)Qalu — 3) H) = Q1)

Q1+ 3)Q1— ) Qo(u + 1)Q2(u — 1)°

We consider the T-system (5) for A)(x) with the initial condition for m = 1 as (8) and

AP @) = oD 4 5/206D @ + 1/2) AP @) = P +3/2) for p=1 0
APy = AP w) =P+ eP @ +2) for p = 2.
Then our main resuit is:

Theorem. The functions

3 14
Ag)(u)=Ql(u—ﬂ)Q1(u+E+3) z [Z:] }:‘}’Gp(u+m+s—i)
? 2 oo 2

pr(u+m+1—j)Hp(u-!-%—2!+2)Hp(u+-’§--—2k+l)

2m n
AP ) = Qz(u—m)Qz(u+m+3)Z£: }: G, (u +m+§ - j) Hy(u+m—214-2)
J=0 =0 k=[j_1._:.]

X Hy(u+m —2k+1) (11)

are the solutions to the T-system (5) with the initial condition (8), (10) and g () given
by

D) = I P (u + (m/t,) + PP (e — (mf1,)) ifa= p (12)
otherwise.

The symbol [x]in (11) denotes the greatest integer not exceeding x and should not be
confused with the one in (6). The function (12) satisfies g — (1/6,)gP @ + (1/%.)) =
8;(:3-1 (u)g,(,f_)_l(u) in accordance with (3.18) of [2] (with a slight normalization change in #).
The theorem can be proved by comparing the coefficients of ¢@ factors on both sides of
the T-system. In particular, the check essentially reduces to the case p =5 = 1. A similar

formula to (11) is available for the sI(n) case in [8].
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AD(u) (11) Yang-Baxterizes the character of W viewed as a C;-module as in (1).

Namely, it contains dimW{* terms and tends to the latter in the ‘braid limit* as follows.

lim q“\(’cAS:)(u) —_ X’Ef)(q(m(ﬂ,a,)’ q(m@)'az))

u—>00,(lg|>1)

N
Ya=s (ZNu +3N -2 w,-) min(1, (t/4,))
j=1

e 1 R |
P21, 22) = Z Z E z =22k
OIS Sm =] 41 k=[£] (13)
= ch V,,,, +chV, +ao 1 m even
= moy T CN Vonadyee, +.. - ch le m odd

XD (21, 22) = ZZ E 7 2722 — ch Vg

=01=0 =[]

Here, chV,, = ch V,(z;, 22) is the irreducible C, character with highest weight @ counting
the (§o + noep)-weight vectors as zf‘szg". The following character identity [18] is a simple
corollary of the above theorem.

aye __ 48] 2
Xon = Xomp1Xom-1 + X5

ma2 _ 1) ) @)
Xomir = XomaoXom X2 X (14)
2@ L 1
X2 = 12 A2+ Ay

In [2,10], x¥ was denoted by Q@ and (14) was called the Q-system. As shown therein,
the combinations ygu} () = (gg,f(u}Aff)(u —DA@w + Ly Aﬁ,ﬂ " (u)Agi_l(u)) etc from
.(5) vield a solution to the CS)Y-system [19], the TBA equation in high temperature limit:

1 1 1+ 72 ()
(1) (1) m
y (u + _) ¥. (u — _) e et
2 (1 I yg:z_l(")_l)(l ; y.'gflfz-l-l(u)_l)

5 (u + _1_) o (u - l) = - (15)
2ot \ W T 5 | Vime 2/ + 2w + 0 )

_ (3 )+ ¥+ IDA 4+ v — I 435, )

A+y2,@™NA +y2, )

Y2+ 1)y@w - 1)

The author thanks Junji Suzuki for a useful discussion and critical reading of the manuscript.
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