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LETlBR TO TRE EDITOR 

Analytic Bethe ansatz and T-system in Cf) vertex models 
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Departmot of Mafhematis, FacuUy of Science. Kyushn University, Fuknoka 812. Japan 

Received 14 December 1993 

Abstract Bigmvalues of the ammntjng family of bausfer matrices are expected to obey the 
T-system, a set of functional relation, proposed recently. Hen we obtain &e solution to the 
Tayaem for Ci') vertex models. They axe wmpatible with the analytic Bnhe an& and 
Yang-Baxtd  the classical charaefus. 

Solvable lattice. models in twc-diiensions possess a commuting family of the row-to- 
row transfer matrices [l]. Recently, a set of functional relations (m), the T-system 
are proposed among them 121 for a wide class of models associated with any classical 
simple Lie algebra 01 its quantum afiine analogue [3,4]. In the QISM terminology [5], 
the T-system relates the transfer matrices with various fusion types in the auxiliary space 
but acting on a common quantum space. It generalizes earlier m 16-91 and enables the 
calculation of various physical quantities [IO]. The structure that underlies the T-system 
is an (short) exact sequence of the finite. dimensional modules of the above mentioned 
algebras 121. As discussed therein, there is an intdguing connection between the T-system, 
the thermodynamic Bethe. ansatz (TBA) and dilogarithm identities, indicating some deep 
interplay among these subjects. 

In this letter we report the solution to the Cf) T-system that is compatible with the 
analytic Bethe ansatz [ll,  121 and Yang-Baxterizes the classical characters. To explain the 
problem, let W,$) (a,= 1.2, m F Z,,) be the irreducible finite dimensional representation 
(WR) of the quantm afline algebra Uq(Cf)) (4: generic) as sketched in section 3.2 of [Z]. 
As the Cz-module, it decomposes as 

wp N v,, 
where w, , OJZ are the fundamental weights and V, denotes the IFDR of CZ with highest weight 
U. Thus dimW,f) = (m+2)(m+4)(m2+6m+6)/48 for m even, = (m+1)(m+3l2(m+5)/48 
for m odd and dim W,O' = (m + l)(m +2)(2m + 3)/6. For W, W' E (W,$)l. a = 1.2, m E 
Z,,}, there exists the quantum R-matrix Rw,wv(u) acting on W @ W' and satisfying the 
Yang-Baxter equation 

Rw.w4u)Rw.w4u + v)aw,,wl,(v) = Rw:w4v)Rw.w4 + v)Rw.w+) (2) 
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with U, U E C being the spectral parameters. For W = W‘ = Wy), the R-matrix has been 
explicitly written down in [13,14], from which all the other Rw,w, may be constmcted via 
the fusion procedure 1151. W$’ is an analogue of the m-fold symmetric tensor representation 
of W,’“’. The transfer matrix with auxiliary space W$) is then defined by 

T?)(u) = Trd)(Rw$),wp(u - WI). . . Rwt>,w,m(~ - UJN))  (3) 

up to an overall scalar multiple. Here N E 22 denotes the system size, W I ,  . . . WN are 
complex parameters representing.ihe inhomogeneity, p = 1.2 and s E Z>1. We say that 
(3) is the row-to-row transfer matrix with fusion type Wi) acting on the quantum space 
(W,‘P))eN. We shall reserve the letters p and s for this meaning throughout. Thanks to the 
Yang-Baxter equation (2). the transfer matrices (3) form a commuting family 

[T?’(U), T$)(u‘)l = 0. (4) 

We shall write the eigenvalues of T‘)(u) as A$)@). Our goal is to find an explicit formula 
for them. 

For the purpose, we postulate the (unrestricted) T-system [2]: 

Here &)(U) is a scalar function that depends on Wp) and overall normalization of the 
transfer matrices. Due to (4) the eigenvalues A,$)@) also obey the same system as 
(3, which can be solved successively yielding an expression of the @(U) in terms of 
AY)(u + shift) and AY)(. + shift). Thus the first step to achieve the goal is to find the 
formula for the eigenvalues AY’@) and A;’)(U). This we do by the analytic Bethe k a t z .  
The method consists of assuming the so-called ‘dressed vacuum form’ for the eigenvalues 
and determining the unknown parts thereby introduced from some functional properties and 
asymptotic behaviours. See [12,16] for the detail. To present the results for our problem, we 
prepare a few notations. Let al. cuz be the simple roots of Cz. We take a2 to be a long root 
and normalize it as (a2 I az) = 2 via the bilinear form (I). Then one bas (a,, I mb) = Sob/ta. 
where tl = 2, tz = 1. We set 

N 

#(U) = n [ U  - W j l  [U] = q” - 4 - y  

j=1 

N. 

j=1 
Q . ( U )  = nrf4 - ‘ u j q  U = 1.2. 
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Here NI, NZ are non-negative integers such that ob) = Nso, - Niat - Nzaz is a non- 
negative weight. The numbers [$’’ I a = 1.2.1 Q j < A‘=} are the solutions to the Bethe 
ansatz equation 1161 

def 

Under these definitions, the result of the analytic Bethe ansatz reads as follows. 
Case p = 1; 

C a s e p = 2 ;  

We employ the convention such that the eigenvalue i w ~ t ~ , w ; ~ ~  (U) on the highest component 
bn, is [U + 3][u -I- I] and let the overall normalization of AY’@) as specified by (8). (The 
common factor @(U + 3) in (8c) has been attached so as to simplify the forthcoming 
formula (U).) The @)(U) consists of dim W:’ = 4,5@ = 1.2) terms and its pole-free 
conditions are given by (7) in accordance with the analytic Bethe ansatz. The formulae (8) 
coincide with those in [16,17] for some special cases. In particular, ratio of Q,’s in AY’(u) 
are just those appearing in [I61 for the Cf) vertex model with w,’“’ = Wf) (upon some 
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convention adjustment). Namely, the Q.-part is determined only from the awiliary space 
choice, whiIe the quantum space dependence enters @!p'-paa. This is also the case in the 
formula (3.17) of [8] for the sl(n) case. Similarly, Q,-part in @(U) are those appearing 
in the B y )  case of [I61 due to the equivalence CZ N &. 

To proceed to A?)@) with higher m, we introduce a few more notations. 

We consider the T-system (5) for A$)@) with the initial condition for m = 1 as (8) and 

@(U) = +:"(U + 5/2)+:I)(u + 1/2) @)(U) = +;')(U + 3/2) 

for p = 2. 

for p = 1 
(10) 

@)(U) =A,  (2) (U) =#)(U + 1)@:% +2) 

Then OUT main result is: 

Theorem. The functions 

-21 +2) H p  (U+ - m - 2k+ 1) 
2 

x H,(u + m  - 2k+ 1) (11) 

are the solutions to the T-system (5) with the initial condition (8), (10) and g$)(u) given 
by 

The symbol [XI in (11) denotes the greatest integer not exceeding x and should not be 
confused with the one in (6). The function (12) satisfies g$)(u - (l/ta))g$)(u + (l/to)) = 
g$~I(u)g$~l(u) in accordance with (3.18) of [2] (with a slight normalization change in U). 
The theorem can be proved by comparing the coefficients of $2) factors on both sides of 
the T-system. In particular, the check essentially reduces to the case p = s = 1. A similar 
formula to (1 1) is available for the d(n) case in [8]. 
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@(U) (11) Yang-Baxterizes the character of FVi) viewed as a Cz-module as in (1). 
Namely, it contains dimW2) terms and tends to the latter in the ‘braid limit’ as follows. 

j= 1 

Here, chVu = ch VJzl, ZZ) is the irreducible CZ character with highest weight o counting 
the (.$a1 + qa&weight vectors as zfz?. The following character identity [18] is a simple 
corollary of the above theorem. 

In [Z, 101, x,$) was denoted by Qt’ and (14) was called the &-system. As shown therein, 
the combinations yg(u)  = (gg(u)Af)(u - +)A$)(u + ~ ) / A ~ + l ( ~ ) A $ l ( ~ ) )  etc from 
(5) yield a solution to the Ct)Y-system [NI, the TBA equation in high temperature limit: 

1 Y2+, (U + ;) Y2+1 (U - ;) = (1 +y;+z(u)-l)(l + y E ( u ) - 9  

The author thanks Junji Suzuki for a useful discussion and critical reading of the manuscript. 
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